For plotting an S3 object of type 'cvFilt'
# S3 method for class 'cvFilt'
plot(
x,
cv_threshold = NULL,
interactive = FALSE,
x_lab = NULL,
y_lab = NULL,
x_lab_size = 11,
y_lab_size = 11,
x_lab_angle = 0,
title_lab = NULL,
title_lab_size = 14,
legend_lab = NULL,
legend_position = "right",
log_scale = TRUE,
n_breaks = 15,
n_bins = 30,
bw_theme = TRUE,
palette = NULL,
...
)
object of class cvFilt generated via
cv_filter
numeric value for cv threshold above which to remove the corresponding biomolecules
logical value. If TRUE produces an interactive plot.
character string specifying the x-axis label.
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
metric
argument.
integer value indicating the font size for the x-axis. The default is 11.
integer value indicating the font size for the y-axis. The default is 11.
integer value indicating the angle of x-axis labels. The default is 0.
character string specifying the plot title
integer value indicating the font size of the plot title. The default is 14.
character string specifying the legend title
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none".
logical value. Indicates whether to use a log2 transformed x-axis. The default is TRUE.
integer value specifying the number of breaks to use. You may get less breaks if rounding causes certain values to become non-unique. The default is 15.
integer value specifying the number of bins to draw in the histogram. The default is 30.
logical value. If TRUE uses the ggplot2 black and white theme.
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
RColorBrewer
.
further arguments passed to or from other methods.
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata)
data(pep_object)
mypep <- group_designation(
omicsData = pep_object,
main_effects = "Phenotype"
)
cvfilt <- cv_filter(omicsData = mypep)
plot(cvfilt, cv_threshold = 20)
plot(cvfilt, cv_threshold = 10, log_scale = FALSE)