vignettes/Convenience_Functions.Rmd
Convenience_Functions.Rmd
Certain functions have been included in pmartR
to
simplify the user’s experience by allowing them to retrieve information
stored in attributes of the omicsData object. We’ll demonstrate these
functions with some of the example omicsData objects from the
pmartRdata
package.
library(pmartR)
library(pmartRdata)
mypro <- pro_object
mymetab <- metab_object
mynmr <- nmr_identified_object
get_data_class()
- Returns data_class attribute from
statRes or trellData object, inherited from the omicsData used in
imd_anova()
or format_data()
# get a statRes object using the proData object
mypro <- group_designation(omicsData = mypro, main_effects = "Phenotype")
myfilter <- imdanova_filter(omicsData = mypro)
mypro <- applyFilt(filter_object = myfilter, omicsData = mypro, min_nonmiss_anova = 2, min_nonmiss_gtest = 3)
## You have specified remove_singleton_groups = TRUE, but there are no singleton groups to remove. Proceeding with application of the IMD-ANOVA filter.
mystats <- imd_anova(omicsData = mypro, test_method = "combined")
## Joining with `by = join_by(SampleID)`
## Joining with `by = join_by(RazorProtein)`
get_data_class(mystats)
## [1] "proData"
get_data_info()
- Returns a list containing the data
scale, normalization information, number of unique entries in e_data,
number of missing observations in e_data, proportion of missing
observations in e_data, number of samples, and data type
get_data_info(omicsData = mypro)
## $data_scale_orig
## [1] "abundance"
##
## $data_scale
## [1] "log2"
##
## $norm_info
## $norm_info$is_normalized
## [1] TRUE
##
##
## $num_edata
## [1] 2737
##
## $num_miss_obs
## [1] 13855
##
## $prop_missing
## [1] 0.2109213
##
## $num_samps
## [1] 24
##
## $data_types
## NULL
##
## $batch_info
## $batch_info$is_bc
## [1] FALSE
get_data_scale()
- Returns current data scale which may
be different from the original data scale (if
edata_transform()
was used)
get_data_scale(omicsObject = mypro)
## [1] "log2"
get_data_scale(omicsObject = mymetab)
## [1] "abundance"
get_data_scale(omicsObject = mynmr)
## [1] "abundance"
get_data_scale_orig()
- Retrieves the character string
indicating the scale the data was originally on when the omicsData
object was created
get_data_scale_orig(omicsObject = mypro)
## [1] "abundance"
get_data_scale_orig(omicsObject = mymetab)
## [1] "abundance"
get_data_scale_orig(omicsObject = mynmr)
## [1] "abundance"
get_edata_cname()
- Returns the name of the column in
e_data that contains the biomolecule IDs
get_edata_cname(omicsObject = mypro)
## [1] "RazorProtein"
get_edata_cname(omicsObject = mymetab)
## [1] "Metabolite"
get_edata_cname(omicsObject = mynmr)
## [1] "Metabolite"
get_emeta_cname()
- Returns the name of the column in
e_meta that contains the mapping to biomolecules in e_data
get_emeta_cname(omicsObject = mypro)
## [1] "RazorProtein"
get_emeta_cname(omicsObject = mymetab)
## NULL
get_emeta_cname(omicsObject = mynmr)
## [1] "Metabolite"
get_fdata_cname()
- Returns the name of the column in
f_data that contains the names of the samples
get_fdata_cname(omicsObject = mypro)
## [1] "SampleID"
get_fdata_cname(omicsObject = mymetab)
## [1] "SampleID"
get_fdata_cname(omicsObject = mynmr)
## [1] "SampleID"
get_group_DF()
- A data.frame with columns for sample
ID and group. If two main effects are provided, the original main effect
levels for each sample are returned as the third and fourth columns of
the data frame. Additionally, the covariates provided will be listed as
attributes of this data frame. For both mymetab
and
mynmr
, we have not designated groups yet so the results are
NULL.
get_group_DF(omicsData = mypro)
## SampleID Group
## 1 Sample_20_Phenotype3_A Phenotype3
## 2 Sample_33_Phenotype3_A Phenotype3
## 3 Sample_49_Phenotype3_A Phenotype3
## 4 Sample_47_Phenotype3_A Phenotype3
## 5 Sample_50_Phenotype3_B Phenotype3
## 6 Sample_36_Phenotype3_B Phenotype3
## 7 Sample_2_Phenotype3_B Phenotype3
## 8 Sample_34_Phenotype3_B Phenotype3
## 9 Sample_41_Phenotype1_A Phenotype1
## 10 Sample_22_Phenotype1_A Phenotype1
## 11 Sample_46_Phenotype1_A Phenotype1
## 12 Sample_27_Phenotype1_A Phenotype1
## 13 Sample_7_Phenotype1_B Phenotype1
## 14 Sample_19_Phenotype1_B Phenotype1
## 15 Sample_37_Phenotype1_B Phenotype1
## 16 Sample_31_Phenotype1_B Phenotype1
## 17 Sample_3_Phenotype2_A Phenotype2
## 18 Sample_38_Phenotype2_A Phenotype2
## 19 Sample_15_Phenotype2_A Phenotype2
## 20 Sample_35_Phenotype2_A Phenotype2
## 21 Sample_44_Phenotype2_B Phenotype2
## 22 Sample_6_Phenotype2_B Phenotype2
## 23 Sample_12_Phenotype2_B Phenotype2
## 24 Sample_9_Phenotype2_B Phenotype2
get_group_DF(omicsData = mymetab)
## NULL
get_group_DF(omicsData = mynmr)
## NULL
get_group_table()
- This function returns a table with
number of samples per group
get_group_table(omicsObject = mypro)
## group
## Phenotype1 Phenotype2 Phenotype3
## 8 8 8
get_isobaric_info()
- A list containing the following
six elements: exp_cname, channel_cname, refpool_channel, refpool_cname,
refpool_notation, and norm_info (list containing a single logical
element that indicates whether the data have been normalized to a
reference pool
myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2")
myiso_normalized <- normalize_isobaric(
omicsData = myiso,
exp_cname = "Plex",
apply_norm = TRUE,
refpool_cname = "Virus",
refpool_notation = "Pool"
)
get_isobaric_info(omicsData = myiso_normalized)
## $exp_cname
## [1] "Plex"
##
## $channel_cname
## NULL
##
## $refpool_channel
## NULL
##
## $refpool_cname
## [1] "Virus"
##
## $refpool_notation
## [1] "Pool"
##
## $norm_info
## $norm_info$is_normalized
## [1] TRUE
get_meta_info()
- Retrieves the values in the meta_info
attribute from an omicsData object
get_meta_info(omicsData = mynmr)
## $meta_data
## [1] TRUE
##
## $num_emeta
## [1] 38
get_nmr_info()
- A list containing the following three
elements: metabolite_name, sample_property_cname, and norm_info (list
containing two logical elements that indicate i) whether the data have
been normalized to a spiked in metabolite or to a property taking
sample-specific values and ii) whether the data have been back
transformed so the values are on a similar scale to the raw values
before normalization.
get_nmr_info(omicsData = mynmr)
## $metabolite_name
## [1] NA
##
## $sample_property_cname
## [1] NA
##
## $norm_info
## $norm_info$is_normalized
## [1] FALSE
##
## $norm_info$backtransform
## [1] NA
mynmr <- edata_transform(
omicsData = nmr_identified_object,
data_scale = "log2"
)
# Normalization using a "spiked in" metabolite
nmr_norm <- normalize_nmr(
omicsData = mynmr, apply_norm = TRUE,
metabolite_name = "unkm1.53",
backtransform = TRUE
)
get_nmr_info(omicsData = nmr_norm)
## $metabolite_name
## [1] "unkm1.53"
##
## $sample_property_cname
## NULL
##
## $norm_info
## $norm_info$is_normalized
## [1] TRUE
##
## $norm_info$backtransform
## [1] TRUE
##
## $norm_info$norm_method
## [1] "nmrObject was normalized using metabolite_name: unkm1.53"
##
## $norm_info$norm_params
## [1] 4.363716 4.779691 5.517468 4.510298 4.605259 5.284030 5.943928 6.534026
## [9] 5.634490 5.458099 5.762838 5.638715 5.403021 5.889520 6.261542 5.640842
## [17] 4.228711 5.819901 6.482046 4.510938 6.531002 5.143085 4.295073 5.201547
## [25] 3.969331 4.707095 4.120682 4.794893 6.439716 6.050808 5.967296 6.467480
## [33] 5.859282 6.098328 6.600868 4.365027 6.036377 4.347367 5.047161 6.189109
## [41] 5.005238
# Normalization using a sample property
nmr_norm <- normalize_nmr(
omicsData = mynmr, apply_norm = TRUE,
sample_property_cname = "Concentration",
backtransform = TRUE
)
get_nmr_info(omicsData = nmr_norm)
## $metabolite_name
## NULL
##
## $sample_property_cname
## [1] "Concentration"
##
## $norm_info
## $norm_info$is_normalized
## [1] TRUE
##
## $norm_info$backtransform
## [1] TRUE
##
## $norm_info$norm_method
## [1] "nmrObject was normalized using sample property: Concentration"
##
## $norm_info$norm_params
## [1] 5.697732 5.374048 4.877954 5.322915 5.301788 5.098320 4.498749 4.838841
## [9] 5.311861 5.010194 5.680948 4.958344 5.342242 5.807285 4.887392 4.875128
## [17] 4.757206 5.515011 5.638298 5.602582 5.471601 5.259434 5.353657 5.216526
## [25] 5.639881 5.531923 5.232129 5.584298 5.048396 5.273855 5.564034 5.649313
## [33] 5.869584 5.840797 5.113072 5.768750 5.266933 5.659354 5.290421 5.258544
## [41] 5.301627
get_filters()
- A list containing filter class objects.
Each element in this list corresponds to a filter applied to the data,
and filters are listed in the order they were applied.
get_filters(omicsData = mypro)
## [[1]]
## $type
## [1] "imdanovaFilt"
##
## $threshold
## min_nonmiss_anova min_nonmiss_gtest
## 1 2 3
##
## $filtered
## [1] "sp|Q99567|NUP88_HUMAN" "sp|Q8N668|COMD1_HUMAN"
## [3] "sp|Q96AX1|VP33A_HUMAN" "sp|Q86SZ2|TPC6B_HUMAN"
## [5] "sp|Q9H008|LHPP_HUMAN" "sp|P19634|SL9A1_HUMAN"
## [7] "sp|Q969N2|PIGT_HUMAN" "sp|P16278|BGAL_HUMAN"
## [9] "sp|O15321|TM9S1_HUMAN" "sp|O75935|DCTN3_HUMAN"
## [11] "sp|P61221|ABCE1_HUMAN" "sp|P09455|RET1_HUMAN"
## [13] "sp|Q15345|LRC41_HUMAN" "sp|Q00653|NFKB2_HUMAN"
## [15] "sp|Q5K4L6|S27A3_HUMAN" "sp|P20591|MX1_HUMAN"
## [17] "sp|Q96SK2|TM209_HUMAN" "sp|O15049|N4BP3_HUMAN"
## [19] "sp|O75167|PHAR2_HUMAN" "sp|P59768|GBG2_HUMAN"
## [21] "sp|Q9UEU0|VTI1B_HUMAN" "sp|Q9HCU5|PREB_HUMAN"
## [23] "sp|Q99615|DNJC7_HUMAN" "sp|Q969X1|LFG3_HUMAN"
## [25] "sp|P54725|RD23A_HUMAN" "sp|Q9NY33|DPP3_HUMAN"
## [27] "sp|P35542|SAA4_HUMAN" "sp|P83916|CBX1_HUMAN"
## [29] "sp|Q86W92|LIPB1_HUMAN" "sp|Q8NI22|MCFD2_HUMAN"
## [31] "sp|O96013|PAK4_HUMAN" "sp|Q63HQ2|EGFLA_HUMAN"
## [33] "sp|Q8NF37|PCAT1_HUMAN" "sp|O76031|CLPX_HUMAN"
## [35] "sp|Q13523|PRP4B_HUMAN" "sp|O95169|NDUB8_HUMAN"
## [37] "sp|Q9Y315|DEOC_HUMAN" "sp|P17693|HLAG_HUMAN"
## [39] "sp|Q9H4G4|GAPR1_HUMAN" "sp|Q8N6T3|ARFG1_HUMAN"
## [41] "sp|P32320|CDD_HUMAN" "sp|Q9BQE5|APOL2_HUMAN"
## [43] "sp|Q9H3N8|HRH4_HUMAN" "sp|Q7L804|RFIP2_HUMAN"
## [45] "sp|Q9BV79|MECR_HUMAN" "sp|Q8N335|GPD1L_HUMAN"
## [47] "sp|O43246|CTR4_HUMAN" "sp|Q86UE4|LYRIC_HUMAN"
## [49] "sp|Q9BYX4|IFIH1_HUMAN" "sp|O43181|NDUS4_HUMAN"
## [51] "sp|Q6FI81|CPIN1_HUMAN" "sp|Q9Y673|ALG5_HUMAN"
## [53] "sp|Q9BY77|PDIP3_HUMAN" "sp|P28329|CLAT_HUMAN"
## [55] "sp|Q8IY26|PLPP6_HUMAN" "sp|P55287|CAD11_HUMAN"
## [57] "sp|O43699|SIGL6_HUMAN" "sp|Q8N1B4|VPS52_HUMAN"
## [59] "sp|O95202|LETM1_HUMAN" "sp|Q07283|TRHY_HUMAN"
## [61] "sp|O14874|BCKD_HUMAN" "sp|P15502|ELN_HUMAN"
## [63] "sp|Q9H6U8|ALG9_HUMAN" "sp|Q15555|MARE2_HUMAN"
## [65] "sp|P10915|HPLN1_HUMAN" "sp|Q659C4|LAR1B_HUMAN"
## [67] "sp|Q8WVQ1|CANT1_HUMAN" "sp|P24928|RPB1_HUMAN"
## [69] "sp|O14925|TIM23_HUMAN" "sp|Q9UHL4|DPP2_HUMAN"
## [71] "sp|Q8N0X7|SPART_HUMAN" "sp|P14735|IDE_HUMAN"
## [73] "sp|O14618|CCS_HUMAN" "sp|Q8N357|S35F6_HUMAN"
## [75] "sp|P23297|S10A1_HUMAN" "sp|P09972|ALDOC_HUMAN"
## [77] "sp|Q5VW32|BROX_HUMAN" "sp|Q8N6M0|OTU6B_HUMAN"
## [79] "sp|P62745|RHOB_HUMAN" "sp|Q8IY63|AMOL1_HUMAN"
## [81] "sp|P48960|CD97_HUMAN" "sp|Q9NRN7|ADPPT_HUMAN"
## [83] "sp|Q9H2V7|SPNS1_HUMAN" "sp|Q04941|PLP2_HUMAN"
## [85] "sp|Q8WVJ2|NUDC2_HUMAN" "sp|P30405|PPIF_HUMAN"
## [87] "sp|Q14694|UBP10_HUMAN" "sp|Q5JRX3|PREP_HUMAN"
## [89] "sp|Q7Z5K2|WAPL_HUMAN" "sp|P12694|ODBA_HUMAN"
## [91] "sp|P52701|MSH6_HUMAN" "sp|Q9H9A5|CNO10_HUMAN"
## [93] "sp|Q12841|FSTL1_HUMAN" "sp|Q9BTT0|AN32E_HUMAN"
## [95] "sp|Q9BVA1|TBB2B_HUMAN" "sp|O60760|HPGDS_HUMAN"
## [97] "sp|P01242|SOM2_HUMAN" "sp|Q8N3U4|STAG2_HUMAN"
## [99] "sp|P09488|GSTM1_HUMAN" "sp|P48553|TPC10_HUMAN"
## [101] "sp|Q16718|NDUA5_HUMAN" "sp|P19623|SPEE_HUMAN"
## [103] "sp|Q9Y646|CBPQ_HUMAN" "sp|P30837|AL1B1_HUMAN"
## [105] "sp|P15153|RAC2_HUMAN" "sp|Q5T5P2|SKT_HUMAN"
## [107] "sp|Q9UN36|NDRG2_HUMAN" "sp|P63218|GBG5_HUMAN"
## [109] "sp|P39880|CUX1_HUMAN" "sp|Q15036|SNX17_HUMAN"
## [111] "sp|Q9Y281|COF2_HUMAN" "sp|Q6ZUJ8|BCAP_HUMAN"
## [113] "sp|Q9UIL1|SCOC_HUMAN" "sp|Q5JU69|TOR2A_HUMAN"
## [115] "sp|P14598|NCF1_HUMAN" "sp|Q6ZMZ3|SYNE3_HUMAN"
## [117] "sp|O95671|ASML_HUMAN" "sp|Q99836|MYD88_HUMAN"
## [119] "sp|Q9H583|HEAT1_HUMAN" "sp|Q16787|LAMA3_HUMAN"
## [121] "sp|A0A0C4DH67|KV108_HUMAN" "sp|P01594|KV133_HUMAN"
## [123] "sp|P25205|MCM3_HUMAN" "sp|Q96KG9|SCYL1_HUMAN"
## [125] "sp|P01704|LV214_HUMAN" "sp|Q06136|KDSR_HUMAN"
## [127] "sp|P54753|EPHB3_HUMAN" "sp|Q96CM8|ACSF2_HUMAN"
## [129] "sp|Q6UY01|LRC31_HUMAN" "sp|Q9UPQ0|LIMC1_HUMAN"
## [131] "sp|Q9Y6R7|FCGBP_HUMAN" "sp|P78524|ST5_HUMAN"
## [133] "sp|O95786|DDX58_HUMAN" "sp|O95182|NDUA7_HUMAN"
## [135] "sp|P54105|ICLN_HUMAN" "sp|Q13123|RED_HUMAN"
## [137] "sp|Q9UEY8|ADDG_HUMAN" "sp|Q15126|PMVK_HUMAN"
## [139] "sp|Q9UBN7|HDAC6_HUMAN" "sp|P61086|UBE2K_HUMAN"
## [141] "sp|Q96T37|RBM15_HUMAN" "sp|Q9HD42|CHM1A_HUMAN"
## [143] "sp|Q96B23|CR025_HUMAN" "sp|Q5JVF3|PCID2_HUMAN"
## [145] "sp|Q01813|PFKAP_HUMAN" "sp|O75208|COQ9_HUMAN"
## [147] "sp|Q9Y4W2|LAS1L_HUMAN" "sp|Q16539|MK14_HUMAN"
## [149] "sp|Q9P0S3|ORML1_HUMAN" "sp|Q9C010|IPKB_HUMAN"
## [151] "sp|Q12768|WASC5_HUMAN" "sp|Q96CM3|RUSD4_HUMAN"
## [153] "sp|O75521|ECI2_HUMAN" "sp|P14854|CX6B1_HUMAN"
## [155] "sp|P51398|RT29_HUMAN" "sp|P0DI82|TPC2B_HUMAN"
## [157] "sp|Q14914|PTGR1_HUMAN" "sp|P01903|DRA_HUMAN"
## [159] "sp|P62491|RB11A_HUMAN" "sp|P52756|RBM5_HUMAN"
## [161] "sp|O43172|PRP4_HUMAN" "sp|P45973|CBX5_HUMAN"
## [163] "sp|Q9UBD5|ORC3_HUMAN" "sp|Q9NQP4|PFD4_HUMAN"
## [165] "sp|O75569|PRKRA_HUMAN" "sp|Q9UQ72|PSG11_HUMAN"
## [167] "sp|Q96Q11|TRNT1_HUMAN" "sp|Q9Y2L1|RRP44_HUMAN"
## [169] "sp|P52815|RM12_HUMAN" "sp|P09486|SPRC_HUMAN"
## [171] "sp|Q14061|COX17_HUMAN" "sp|Q96K17|BT3L4_HUMAN"
## [173] "sp|Q09472|EP300_HUMAN" "sp|Q9NTX5|ECHD1_HUMAN"
## [175] "sp|Q8NEU8|DP13B_HUMAN" "sp|Q9UBW8|CSN7A_HUMAN"
## [177] "sp|P11217|PYGM_HUMAN" "sp|Q59GN2|R39L5_HUMAN"
## [179] "sp|Q7Z5L9|I2BP2_HUMAN" "sp|Q96NY8|NECT4_HUMAN"
## [181] "sp|Q14134|TRI29_HUMAN" "sp|Q8IYI6|EXOC8_HUMAN"
## [183] "sp|O75122|CLAP2_HUMAN" "sp|Q86UY8|NT5D3_HUMAN"
## [185] "sp|P0DJI9|SAA2_HUMAN" "sp|Q14444|CAPR1_HUMAN"
## [187] "sp|P27449|VATL_HUMAN" "sp|Q16706|MA2A1_HUMAN"
## [189] "sp|Q08752|PPID_HUMAN" "sp|P07919|QCR6_HUMAN"
## [191] "sp|Q8NFF5|FAD1_HUMAN" "sp|Q58FF6|H90B4_HUMAN"
## [193] "sp|Q9Y6K0|CEPT1_HUMAN" "sp|Q13620|CUL4B_HUMAN"
## [195] "sp|P07360|CO8G_HUMAN" "sp|Q96PE2|ARHGH_HUMAN"
## [197] "sp|Q9NYF0|DACT1_HUMAN" "sp|Q9H7D0|DOCK5_HUMAN"
## [199] "sp|P19878|NCF2_HUMAN" "sp|Q8IY67|RAVR1_HUMAN"
## [201] "sp|O75448|MED24_HUMAN" "sp|Q08495|DEMA_HUMAN"
## [203] "sp|Q9BUR5|MIC26_HUMAN" "sp|Q15785|TOM34_HUMAN"
## [205] "sp|Q96EY7|PTCD3_HUMAN" "sp|O43236|SEPT4_HUMAN"
## [207] "sp|Q8TBA6|GOGA5_HUMAN" "sp|O43464|HTRA2_HUMAN"
## [209] "sp|O96019|ACL6A_HUMAN" "sp|Q9Y263|PLAP_HUMAN"
## [211] "sp|P22830|HEMH_HUMAN" "sp|Q9NVP1|DDX18_HUMAN"
## [213] "sp|P48507|GSH0_HUMAN" "sp|P10415|BCL2_HUMAN"
## [215] "sp|Q6ZSR9|YJ005_HUMAN" "sp|O14498|ISLR_HUMAN"
## [217] "sp|Q9Y279|VSIG4_HUMAN" "sp|Q5VW38|GP107_HUMAN"
## [219] "sp|Q9HCJ6|VAT1L_HUMAN" "sp|P62834|RAP1A_HUMAN"
## [221] "sp|P15151|PVR_HUMAN" "sp|Q8N4V1|MMGT1_HUMAN"
## [223] "sp|Q8IUR0|TPPC5_HUMAN" "sp|Q9NUQ2|PLCE_HUMAN"
## [225] "sp|P63172|DYLT1_HUMAN" "sp|P51689|ARSD_HUMAN"
## [227] "sp|Q86VR2|RETR3_HUMAN" "sp|P13598|ICAM2_HUMAN"
## [229] "sp|P0DMP2|SRG2B_HUMAN" "sp|O14929|HAT1_HUMAN"
## [231] "sp|Q9Y580|RBM7_HUMAN" "sp|Q6UXN9|WDR82_HUMAN"
## [233] "sp|Q96SL4|GPX7_HUMAN" "sp|Q9H2M9|RBGPR_HUMAN"
## [235] "sp|P22748|CAH4_HUMAN" "sp|P09234|RU1C_HUMAN"
## [237] "sp|Q9BU23|LMF2_HUMAN" "sp|O43678|NDUA2_HUMAN"
## [239] "sp|Q08174|PCDH1_HUMAN" "sp|P82675|RT05_HUMAN"
## [241] "sp|O75746|CMC1_HUMAN" "sp|O95155|UBE4B_HUMAN"
## [243] "sp|O43292|GPAA1_HUMAN" "sp|Q9BXJ9|NAA15_HUMAN"
## [245] "sp|Q9C0D9|EPT1_HUMAN"
##
## $method
## [1] "combined"
##
## attr(,"class")
## [1] "filter"
get_data_norm()
- Returns the norm_info element of the
data_info attribute indicating whether the data have been
normalized
get_data_norm(omicsObject = mypro)
## [1] TRUE
get_data_norm(omicsObject = mymetab)
## [1] FALSE
get_data_norm(omicsObject = mynmr)
## [1] FALSE
get_isobaric_norm()
- A logical value indicating
whether the data have been isobaric normalized
get_isobaric_norm(myiso)
## [1] FALSE
get_isobaric_norm(myiso_normalized)
## [1] TRUE
get_nmr_norm()
- A logical value indicating whether the
data have been NMR normalized
get_nmr_norm(omicsData = mynmr)
## [1] FALSE
get_nmr_norm(omicsData = nmr_norm)
## [1] TRUE
get_comparisons()
- Returns a data frame with
comparisons and their indices
imd_anova_res <- imd_anova(
omicsData = mypro,
test_method = "comb",
pval_adjust_a_multcomp = "bon",
pval_adjust_g_multcomp = "bon"
)
## Joining with `by = join_by(SampleID)`
## Joining with `by = join_by(RazorProtein)`
get_comparisons(compObj = imd_anova_res)
## comparisons index
## 1 Phenotype3_vs_Phenotype1 1
## 2 Phenotype3_vs_Phenotype2 2
## 3 Phenotype1_vs_Phenotype2 3