R/normRes_tests.R
normRes_tests.Rd
Computes p-values from a test of dependence between normalization parameters and group assignment of a normalized omicsData or normRes object
normRes_tests(norm_obj, test_fn = "kw")
object of class 'pepData', 'proData', 'lipidData',
'metabData', 'isobaricpepData', or 'nmrData' that has had normalize_global()
run
on it, or a 'normRes' object
character string indicating the statistical test to use. Current options are "anova" and "kw" for a Kruskal-Wallis test.
A list with 2 entries containing the p_value of the test performed on the location and scale (if it exists) parameters.
library(pmartRdata)
mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2")
mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype")
# provide the normRes object
mynorm <- normalize_global(omicsData = mymetab, subset_fn = "all",
norm_fn = "median", apply_norm = FALSE)
norm_pvals <- normRes_tests(norm_obj = mynorm)
# provide normalized omicsData object
mymetab <- normalize_global(omicsData = mymetab, subset_fn = "all",
norm_fn = "median", apply_norm = TRUE)
norm_pvals <- normRes_tests(norm_obj = mymetab)
# NMR data object
mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2")
mynmr <- group_designation(mynmr, main_effects = "Condition")
mynmrnorm <- normalize_nmr(
omicsData = mynmr,
apply_norm = TRUE,
sample_property_cname = "Concentration"
)
mynmrnorm <- normalize_global(omicsData = mynmrnorm, subset_fn = "all",
norm_fn = "median", apply_norm = TRUE, backtransform = TRUE)
norm_pvals <- normRes_tests(norm_obj = mynmrnorm)