For generating statistics for 'seqData' objects
dispersion_est(
omicsData,
method,
interactive = FALSE,
x_lab = NULL,
x_lab_size = 11,
x_lab_angle = NULL,
y_lab = NULL,
y_lab_size = 11,
title_lab = NULL,
title_lab_size = 14,
legend_lab = NULL,
legend_position = "right",
bw_theme = TRUE,
palette = NULL,
point_size = 0.2,
custom_theme = NULL
)
seqData object used to terst dispersions
either "DESeq2", "edgeR", or "voom" for testing dispersion
Logical. If TRUE produces an interactive plot.
A character string specifying the x-axis label when the metric argument is NULL. The default is NULL in which case the x-axis label will be "count".
An integer value indicating the font size for the x-axis. The default is 11.
An integer value indicating the angle of x-axis labels.
A character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
metric
argument.
An integer value indicating the font size for the y-axis. The default is 11.
A character string specifying the plot title when the
metric
argument is NULL.
An integer value indicating the font size of the plot title. The default is 14.
A character string specifying the legend title.
A character string specifying the position of the legend. Can be one of "right", "left", "top", or "bottom". The default is "right".
Logical. If TRUE uses the ggplot2 black and white theme.
A character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
RColorBrewer
.
An integer specifying the size of the points. The default is 0.2.
a ggplot `theme` object to be applied to non-interactive plots, or those converted by plotly::ggplotly().
plot result
DESeq2 option requires package "survival" to be available.
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.
# \donttest{
library(pmartRdata)
myseqData <- group_designation(omicsData = rnaseq_object, main_effects = "Virus")
dispersion_est(omicsData = myseqData, method = "edgeR")
dispersion_est(omicsData = myseqData, method = "DESeq2")
dispersion_est(omicsData = myseqData, method = "voom")
# }