R/as.trelliData.R
as.trelliData.Rd
Either an omicData and/or a statRes object are accepted. omicData must be transformed and normalized, unless the data is isobaric protein or NMR data. If group_designation() has been run on the omicData object to add "main_effects", the resulting plots will include groups. The main effects group_designation and e_meta columns are merged to the e_data in long format to create the trelliData.omics dataframe, and e_meta is merged to statRes in long format to create trelliData.stat dataframe.
as.trelliData(omicsData = NULL, statRes = NULL)
an object of the class 'pepData', 'isobaricpepData',
proData', 'metabData', 'lipidData', or 'nmrData', created by
as.pepData
, as.isobaricpepData
,
as.proData
, as.metabData
,
as.lipidData
, or as.nmrData
, respectively.
statRes an object of the class 'statRes', created by
imd_anova
An object of class 'trelliData' containing the raw data and optionally, statRes. To be passed to trelliscope building functions.
# \donttest{
library(pmartRdata)
###########################
## MS/NMR OMICS EXAMPLES ##
###########################
# Transform the data
omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2")
# Group the data by condition
omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype"))
# Apply the IMD ANOVA filter
imdanova_Filt <- imdanova_filter(omicsData = omicsData)
omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData,
min_nonmiss_anova = 2)
# Normalize my pepData
omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median",
"apply_norm" = TRUE, "backtransform" = TRUE)
# Implement the IMD ANOVA method and compute all pairwise comparisons
# (i.e. leave the `comparisons` argument NULL)
statRes <- imd_anova(omicsData = omicsData, test_method = 'combined')
# Generate the trelliData object
trelliData2 <- as.trelliData(omicsData = omicsData)
trelliData3 <- as.trelliData(statRes = statRes)
trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes)
######################
## RNA-SEQ EXAMPLES ##
######################
# Group data by condition
omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus"))
# Filter low transcript counts
omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq),
omicsData = omicsData_seq, min_count = 15)
# Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom').
# See ?difexp_seq for more details
statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom")
# Generate the trelliData object
trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq)
trelliData_seq3 <- as.trelliData(statRes = statRes_seq)
trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq)
# }