QCRFSC batch correction
bc_qcrfsc.Rd
This function returns a pmart object that has been undergone QCRFSC batch effect correction
Usage
bc_qcrfsc(
omicsData,
qc_cname,
qc_val,
order_cname,
group_cname,
ntree = 500,
keep_qc = FALSE
)
Arguments
- omicsData
an object of the class 'pepData', 'proData', 'metabData', 'lipidData', or 'nmrData', usually created by
as.pepData
,as.proData
,as.metabData
,as.lipidData
, oras.nmrData
, respectively.- qc_cname
character string giving name of column in omicsData$f_data that contains the factor variable indicating whether sample is QC or not
- qc_val
character string giving the value from the qc_cname column that indicates a QC sample
- order_cname
character string giving name of column in omicsData$f_data that contains the run order
- group_cname
character string giving the name of the column in omicsData$f_data that contians the group information
- ntree
number of trees to grow in random forest model (default is set to 500)
- keep_qc
logical value to determine whether or not to include QC samples in the final output of the data (default is set to FALSE)
Details
QCRFSC is ran on the raw abundance values. However, it is recommended to run imputation on the log2 scale. Therefore, when using QCRFSC, it is encouraged to transform the data to log2 scale for imputation, and then transform the data back to a raw abundance scale for bc_qcrfsc
Examples
library(malbacR)
library(pmartR)
data("pmart_amide")
pmart_amide <- edata_transform(pmart_amide,"log2")
impObj <- imputation(omicsData = pmart_amide)
amide_imp <- apply_imputation(imputeData = impObj, omicsData = pmart_amide)
amide_imp_abund <- edata_transform(amide_imp,"abundance")
amide_imp_abund <- group_designation(amide_imp_abund,main_effects = "group")
amide_qcrfsc <- bc_qcrfsc(omicsData = amide_imp_abund,qc_cname = "group",qc_val = "QC",order_cname = "Injection_order",group_cname = "group", ntree = 500,keep_qc = FALSE)